Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
2.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298767

RESUMO

Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by thin-layer chromatography and nuclear magnetic resonance.


Assuntos
Indóis , Pigmentos Biológicos , Yarrowia , Indóis/isolamento & purificação , Fermentação , Yarrowia/química , Yarrowia/genética , Yarrowia/metabolismo , Biotecnologia , Engenharia Genética , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética , Pigmentos Biológicos/isolamento & purificação
3.
Fungal Genet Biol ; 160: 103694, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398258

RESUMO

Filamentous fungal secondary metabolites are an important source of bioactive components. Genome sequencing ofAspergillus terreusrevealed many silent secondary metabolite biosynthetic gene clusters presumed to be involved in producing secondary metabolites. Activation of silent gene clusters through overexpressing a pathway-specific regulator is an effective avenue for discovering novel fungal secondary metabolites. Replacement of the native promoter of the pathway-specific activator with the inducible Tet-on system to activate thetazpathway led to the discovery of a series of azaphilone secondary metabolites, among which azaterrilone A (1) was purified and identified for the first time. Genetic deletion of core PKS genes and transcriptional analysis further characterized thetazgene cluster to consist of 16 genes with the NR-PKS and the HR-PKS collaborating in a convergent mode. Based on the putative gene functions and the characterized compounds structural information, a biosynthetic pathway of azaterrilone A (1) was proposed.


Assuntos
Aspergillus , Família Multigênica , Aspergillus/genética , Aspergillus/metabolismo , Benzopiranos , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
4.
BMC Plant Biol ; 22(1): 27, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016620

RESUMO

BACKGROUND: Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS: The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS: This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.


Assuntos
Antocianinas/genética , Antocianinas/metabolismo , Carotenoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
5.
BMC Plant Biol ; 22(1): 52, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078406

RESUMO

BACKGROUND: A puzzle in evolution is the understanding of how the environment might drive subtle phenotypic variation, and whether this variation is adaptive. Under the neutral evolutionary theory, subtle phenotypes are almost neutral with little adaptive value. To test this idea, we studied the infraspecific variation in flower shape and color in Mammillaria haageana, a species with a wide geographical distribution and phenotypic variation, which populations are often recognized as infraspecific taxa. RESULTS: We collected samples from wild populations, kept them in the greenhouse for at least one reproductive year, and collected newly formed flowers. Our first objective was to characterize tepal natural variation in M. haageana through geometric morphometric and multivariate pigmentation analyses. We used landmark-based morphometrics to quantify the trends of shape variation and tepal color-patterns in 20 M. haageana accessions, belonging to five subspecies, plus 8 M. albilanata accessions for comparison as the sister species. We obtained eight geometric morphometric traits for tepal shape and color-patterns. We found broad variation in these traits between accessions belonging to the same subspecies, without taxonomic congruence with those infraspecific units. Also the phenetic cluster analysis showed different grouping patterns among accessions. When we correlated these phenotypes to the environment, we also found that solar radiation might explain the variation in tepal shape and color, suggesting that subtle variation in flower phenotypes might be adaptive. Finally we present anatomical sections in M. haageana subsp. san-angelensis to propose some of the underlying tepal structural features that may give rise to tepal variation. CONCLUSIONS: Our geometric morphometric approach of flower shape and color allowed us to identify the main trends of variation in each accession and putative subspecies, but also allowed us to correlate these variation to the environment, and propose anatomical mechanisms underlying this diversity of flower phenotypes.


Assuntos
Evolução Biológica , Cactaceae/genética , Flores/anatomia & histologia , Flores/genética , Pigmentos Biológicos/metabolismo , Adaptação Fisiológica , Cactaceae/fisiologia , Flores/fisiologia , Pigmentos Biológicos/genética
6.
Genes (Basel) ; 12(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946925

RESUMO

Nicotiana alata is an ornamental horticultural plant with a variety of flower colors and a long flowering period. The genes in four different colored N. alata (white, purple, red, and lemon green) were analyzed to explain the differences in flower color using transcriptomes. A total of 32 differential expression genes in the chlorophyll biosynthesis pathway and 41 in the anthocyanin biosynthesis pathway were identified. The enrichment analysis showed that the chlorophyll biosynthesis pathway and anthocyanin biosynthesis pathway play critical roles in the color differences of N. alata. The HEMA of the chlorophyll biosynthesis pathway was up-regulated in lemon green flowers. Compared with white flowers, in the red and purple flowers, F3H, F3'5'H and DFR were significantly up-regulated, while FLS was significantly down-regulated. Seventeen differential expression genes homologous to transcription factor coding genes were obtained, and the homologues of HY5, MYB12, AN1 and AN4 were also involved in flower color differences. The discovery of these candidate genes related to flower color differences is significant for further research on the flower colors formation mechanism and color improvements of N. alata.


Assuntos
Flores/genética , Pigmentação/genética , Pigmentos Biológicos/genética , Fatores de Transcrição/genética , Antocianinas/genética , Cor , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Proteínas de Plantas/genética , Transcriptoma/genética
7.
ACS Synth Biol ; 10(10): 2607-2616, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34555894

RESUMO

The resistance markers could ensure the entry of the CRISPR/Cas9 system into Aspergillus niger cells instead of gene editing. To increase the efficiency of positive colony screening on the primary transformation plates, we designed a visualized multigene editing system (VMS) via a unique tRNA-guide RNA (gRNA) array containing the gRNAs of a pigment gene albA and target genes. Disruption of albA produces white colonies, and the sequences of the endogenous tRNAAla, tRNAPhe, tRNAArg, tRNAIle, and tRNALeu enhance gRNA release. The disruption efficiencies of multigene were analyzed in the A. niger strain AG11 using ammA, amyA, prtT, kusA, and glaA as reporters. In white colonies on the primary transformation plates, the disruption rates of one-, two-, three-, four-, and five-target genes reached 89.2, 70.91, 50, 22.41, and 4.17%, respectively. The VMS developed here provides an effective method for screening homokaryotic multigene editing strains of A. niger.


Assuntos
Aspergillus niger/genética , Edição de Genes/métodos , Genes Fúngicos , DNA Fúngico/genética , Pigmentos Biológicos/genética , RNA Guia de Cinetoplastídeos/genética , RNA de Transferência/genética
8.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34423786

RESUMO

Based on a careful examination of the onset of violet colored dots along the filaments in the developing floral bud stage and the formation of alternating bands of violet and white color in the matured flowers of Passiflora incarnata (Passion flower), it is concluded that the pattern arises from a competition between the production of violet colored anthocyanin and the colorless flavonols along the filaments. The activator-inhibitor model of Gierer and Meinhardt along with the reaction diffusion theory of Turing is used to explain the formation of concentric rings in the flower.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Passiflora/crescimento & desenvolvimento , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Pigmentos Biológicos/genética , Proteínas de Plantas/genética
9.
Biomolecules ; 11(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439820

RESUMO

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Assuntos
Adaptação Fisiológica/genética , Antibacterianos/biossíntese , Proteínas Anticongelantes/biossíntese , Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Redes e Vias Metabólicas/genética , Proteínas Anticongelantes/genética , Regiões Árticas , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biotecnologia/métodos , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Temperatura Baixa , Biologia Computacional/métodos , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/genética , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Humanos , Lipídeos/biossíntese , Lipídeos/genética , Fluidez de Membrana , Metagenoma , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética
10.
Genes (Basel) ; 12(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356108

RESUMO

A nonsense variant in HPS3, c.2420G>A or p.Trp807*, was recently discovered as the cause for a brown coat color termed cocoa in French Bulldogs. Here, we studied the genotype-phenotype correlation regarding coat color in HPS3 mutant dogs that carried various combinations of mutant alleles at other coat color genes. Different combinations of HPS3, MLPH and TYRP1 genotypes resulted in subtly different shades of brown coat colors. As HPS3 variants in humans cause the Hermansky-Pudlak syndrome type 3, which in addition to oculocutaneous albinism is characterized by a storage pool deficiency leading to bleeding tendency, we also investigated the phenotypic consequences of the HPS3 variant in French Bulldogs on hematological parameters. HPS3 mutant dogs had a significantly lowered platelet dense granules abundance. However, no increased bleeding tendencies in daily routine were reported by dog owners. We therefore conclude that in dogs, the phenotypic effect of the HPS3 variant is largely restricted to pigmentation. While an effect on platelet morphology is evident, we did not obtain any indications for major health problems associated with the cocoa coat color in French Bulldogs. Further studies will be necessary to definitely rule out very subtle effects on visual acuity or a clinically relevant bleeding disorder.


Assuntos
Pelo Animal/metabolismo , Cães/genética , Pigmentos Biológicos/genética , Alelos , Pelo Animal/fisiologia , Animais , Plaquetas/metabolismo , Cruzamento , Estudos de Associação Genética , Genótipo , Síndrome de Hermanski-Pudlak/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fenótipo , Pigmentação/genética
11.
Plant J ; 107(6): 1711-1723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245606

RESUMO

Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.


Assuntos
Flores/fisiologia , Gentiana/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Xantonas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flores/genética , Gentiana/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estrutura Molecular , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Xantenos/metabolismo , Xantonas/química , Xantonas/isolamento & purificação
12.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34280087

RESUMO

In Heliconius butterflies, wing colour pattern diversity and scale types are controlled by a few genes of large effect that regulate colour pattern switches between morphs and species across a large mimetic radiation. One of these genes, cortex, has been repeatedly associated with colour pattern evolution in butterflies. Here we carried out CRISPR knockouts in multiple Heliconius species and show that cortex is a major determinant of scale cell identity. Chromatin accessibility profiling and introgression scans identified cis-regulatory regions associated with discrete phenotypic switches. CRISPR perturbation of these regions in black hindwing genotypes recreated a yellow bar, revealing their spatially limited activity. In the H. melpomene/timareta lineage, the candidate CRE from yellow-barred phenotype morphs is interrupted by a transposable element, suggesting that cis-regulatory structural variation underlies these mimetic adaptations. Our work shows that cortex functionally controls scale colour fate and that its cis-regulatory regions control a phenotypic switch in a modular and pattern-specific fashion.


Heliconius butterflies have bright patterns on their wings that tell potential predators that they are toxic. As a result, predators learn to avoid eating them. Over time, unrelated species of butterflies have evolved similar patterns to avoid predation through a process known as Müllerian mimicry. Worldwide, there are over 180,000 species of butterflies and moths, most of which have different wing patterns. How do genes create this pattern diversity? And do butterflies use similar genes to create similar wing patterns? One of the genes involved in creating wing patterns is called cortex. This gene has a large region of DNA around it that does not code for proteins, but instead, controls whether cortex is on or off in different parts of the wing. Changes in this non-coding region can act like switches, turning regions of the wing into different colours and creating complex patterns, but it is unclear how these switches have evolved. Butterfly wings get their colour from tiny structures called scales, which each have their own unique set of pigments. In Heliconius butterflies, there are three types of scales: yellow/white scales, black scales, and red/orange/brown scales. Livraghi et al. used a DNA editing technique called CRISPR to find out whether the cortex gene affects scale type. First, Livraghi et al. confirmed that deleting cortex turned black and red scales yellow. Next, they used the same technique to manipulate the non-coding DNA around the cortex gene to see the effect on the wing pattern. This manipulation turned a black-winged butterfly into a butterfly with a yellow wing band, a pattern that occurs naturally in Heliconius butterflies. The next step was to find the mutation responsible for the appearance of yellow wing bands in nature. It turns out that a bit of extra genetic code, derived from so-called 'jumping genes', had inserted itself into the non-coding DNA around the cortex gene, 'flipping' the switch and leading to the appearance of the yellow scales. Genetic information contains the instructions to generate shape and form in most organisms. These instructions evolve over millions of years, creating everything from bacteria to blue whales. Butterfly wings are visual evidence of evolution, but the way their genes create new patterns isn't specific to butterflies. Understanding wing patterns can help researchers to learn how genetic switches control diversity across other species too.


Assuntos
Borboletas/genética , Pigmentos Biológicos/genética , Asas de Animais/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cor , Fenótipo
13.
Methods Mol Biol ; 2288: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270002

RESUMO

High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Pigmentação , Melhoramento Vegetal/métodos , Clorofila/deficiência , Clorofila/genética , Diploide , Grão Comestível/genética , Haploidia , Homozigoto , Modelos Biológicos , Biologia Molecular/métodos , Pigmentação/genética , Pigmentos Biológicos/deficiência , Pigmentos Biológicos/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Regeneração/genética , Regeneração/fisiologia
14.
Anim Genet ; 52(4): 451-460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33939849

RESUMO

Tyrp1 gene, as a member of the tyrosinase family, has undergone a recent duplication event during fourth-round whole genome duplication in common carp. In this research, three Tyrp1 genes were identified in Oujiang-color common carp (Cyprinus carpio var. color). The similar expression patterns and close phylogenetic relationship indicated that Tyrp1c is homologous to Tyrp1b and possibly originated from the ancient Tyrp1b. The rates of synonymous and non-synonymous substitution (Ka /Ks ) in Tyrp1 across teleost phylogeny indicated that Tyrp1a is more likely to be in the process of purifying selection. The CRISPR/Cas9 system was used to disrupt the Tyrp1 genes in zebrafish and the WB (black patches on white skin) strain of Oujiang-color common carp. The Tyrp1 loss of function variants in zebrafish and WB carp showed severe melanin deficiency in the skin. Meanwhile, inactivation of a single Tyrp1 gene did not obstruct melanin synthesis, which proved that the functional redundancy of Tyrp1 genes existed in both zebrafish and Oujiang-color common carp. Among the mosaic individuals with Tyrp1 genes in disrupted-color common carp, various mutations in Tyrp1b gene induced gray or brown phenotypes, suggesting that it may be bifunctional in Oujiang-color common carp. In addition, the phenotype of WB variants was different from that of WW (whole white skin), suggesting that Tyrp1 genes were not the key factor that caused the difference between WB and WW.


Assuntos
Carpas/genética , Glicoproteínas de Membrana/genética , Oxirredutases/genética , Pigmentos Biológicos/genética , Animais , Cor , Feminino , Duplicação Gênica , Masculino , Glicoproteínas de Membrana/metabolismo , Oxirredutases/metabolismo
15.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006650

RESUMO

The recent leveraging of genome-resolved metagenomics has generated an enormous number of genomes from novel uncultured microbial lineages yet left many clades undescribed. Here, we present a global analysis of genomes belonging to Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. All orders in Binatota encoded the capacity for aerobic methylotrophy using methanol, methylamine, sulfomethanes, and chloromethanes as the substrates. Methylotrophy in Binatota was characterized by order-specific substrate degradation preferences, as well as extensive metabolic versatility, i.e., the utilization of diverse sets of genes, pathways, and combinations to achieve a specific metabolic goal. The genomes also encoded multiple alkane hydroxylases and monooxygenases, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids (lycopene, ß- and γ-carotenes, xanthins, chlorobactenes, and spheroidenes) production. Further, the majority of genes involved in bacteriochlorophyll a, c, and d biosynthesis were identified, although absence of key genes and failure to identify a photosynthetic reaction center preclude proposing phototrophic capacities. Analysis of 16S rRNA databases showed the preferences of Binatota to terrestrial and freshwater ecosystems, hydrocarbon-rich habitats, and sponges, supporting their potential role in mitigating methanol and methane emissions, breakdown of alkanes, and their association with sponges. Our results expand the lists of methylotrophic, aerobic alkane-degrading, and pigment-producing lineages. We also highlight the consistent encountering of incomplete biosynthetic pathways in microbial genomes, a phenomenon necessitating careful assessment when assigning putative functions based on a set-threshold of pathway completion.IMPORTANCE A wide range of microbial lineages remain uncultured, yet little is known regarding their metabolic capacities, physiological preferences, and ecological roles in various ecosystems. We conducted a thorough comparative genomic analysis of 108 genomes belonging to the Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. We present evidence that members of the order Binatota specialize in methylotrophy and identify an extensive repertoire of genes and pathways mediating the oxidation of multiple one-carbon (C1) compounds in Binatota genomes. The occurrence of multiple alkane hydroxylases and monooxygenases in these genomes was also identified, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids production. We also report on the presence of incomplete chlorophyll biosynthetic pathways in all genomes and propose several evolutionary-grounded scenarios that could explain such a pattern. Assessment of the ecological distribution patterns of the Binatota indicates preference of its members to terrestrial and freshwater ecosystems characterized by high methane and methanol emissions, as well as multiple hydrocarbon-rich habitats and marine sponges.


Assuntos
Alcanos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Genômica/métodos , Pigmentos Biológicos/biossíntese , Bactérias/classificação , Ecossistema , Filogenia , Pigmentos Biológicos/genética , RNA Ribossômico 16S/genética
16.
Fungal Genet Biol ; 152: 103567, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33989788

RESUMO

Fungi produce secondary metabolites that are not directly involved in their growth, but often contribute to their adaptation to extreme environmental stimuli and enable their survival. Conidial pigment or melanin is one of the secondary metabolites produced naturally by a polyketide synthesis (PKS) gene cluster in several filamentous fungi and is known to protect these fungi from extreme radiation conditions. Several pigmented or melanized fungi have been shown to grow under extreme radiation conditions at the Chernobyl nuclear accident site. Some of these fungi, including Paecilomyces variotii, were observed to grow towards the source of radiation. Therefore, in this study, we wanted to identify if the pigment produced by P. variotii, contributes to providing protection against radiation condition. We first identified the PKS gene responsible for synthesis of pigment in P. variotii and confirmed its role in providing protection against UV irradiation through CRISPR-Cas9 mediated gene deletion. This is the first report that describes the use of CRISPR methodology to create gene deletions in P. variotii. Further, we showed that the pigment produced by this fungus, was not inhibited by DHN-melanin pathway inhibitors, indicating that the fungus does not produce melanin. We then identified the pigment synthesized by the PKS gene of P. variotii, as a naptho-pyrone Ywa1, by heterologously expressing the gene in Aspergillus nidulans. The results obtained will further aid in understanding the mechanistic basis of radiation resistance.


Assuntos
Paecilomyces/genética , Paecilomyces/metabolismo , Paecilomyces/efeitos da radiação , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética , Pigmentos Biológicos/isolamento & purificação , Raios Ultravioleta , Aspergillus nidulans/genética , Byssochlamys , Acidente Nuclear de Chernobyl , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Melaninas/genética , Melaninas/isolamento & purificação , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , Família Multigênica , Paecilomyces/isolamento & purificação , Pigmentação , Pigmentos Biológicos/metabolismo , Policetídeo Sintases/genética , Pironas/metabolismo , Metabolismo Secundário , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
17.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923591

RESUMO

Flower colour is an important trait for plants to attract pollinators and ensure their reproductive success. Among yellow flower pigments, the nudicaulins in Papaver nudicaule L. (Iceland poppy) are unique due to their rarity and unparalleled flavoalkaloid structure. Nudicaulins are derived from pelargonidin glycoside and indole, products of the flavonoid and indole/tryptophan biosynthetic pathway, respectively. To gain insight into the molecular and chemical basis of nudicaulin biosynthesis, we combined transcriptome, differential gel electrophoresis (DIGE)-based proteome, and ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS)-based metabolome data of P. nudicaule petals with chemical investigations. We identified candidate genes and proteins for all biosynthetic steps as well as some key metabolites across five stages of petal development. Candidate genes of amino acid biosynthesis showed a relatively stable expression throughout petal development, whereas most candidate genes of flavonoid biosynthesis showed increasing expression during development followed by downregulation in the final stage. Notably, gene candidates of indole-3-glycerol-phosphate lyase (IGL), sharing characteristic sequence motifs with known plant IGL genes, were co-expressed with flavonoid biosynthesis genes, and are probably providing free indole. The fusion of indole with pelargonidin glycosides was retraced synthetically and promoted by high precursor concentrations, an excess of indole, and a specific glycosylation pattern of pelargonidin. Thus, nudicaulin biosynthesis combines the enzymatic steps of two different pathways with a spontaneous fusion of indole and pelargonidin glycoside under precisely tuned reaction conditions.


Assuntos
Flavonoides/biossíntese , Alcaloides Indólicos/metabolismo , Papaveraceae/metabolismo , Pigmentos Biológicos/biossíntese , Proteínas de Plantas/metabolismo , Flavonoides/genética , Flores/química , Flores/genética , Flores/metabolismo , Metaboloma , Papaveraceae/química , Papaveraceae/genética , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Proteoma , Transcriptoma
18.
Plant Physiol ; 186(3): 1473-1486, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826743

RESUMO

Betalains are the nitrogenous pigments that replace anthocyanins in the plant order Caryophyllales. Here, we describe unconventional decarboxylated betalains in quinoa (Chenopodium quinoa) grains. Decarboxylated betalains are derived from a previously unconsidered activity of the 4,5-DOPA-extradiol-dioxygenase enzyme (DODA), which has been identified as the key enzymatic step in the established biosynthetic pathway of betalains. Here, dopamine is fully characterized as an alternative substrate of the DODA enzyme able to yield an intermediate and structural unit of plant pigments: 6-decarboxy-betalamic acid, which is proposed and described. To characterize this activity, quinoa grains of different colors were analyzed in depth by chromatography, time-of-flight mass spectrometry, and reactions were performed in enzymatic assays and bioreactors. The enzymatic-chemical scheme proposed leads to an uncharacterized family of 6-decarboxylated betalains produced by a hitherto unknown enzymatic activity. All intermediate compounds as well as the final products of the dopamine-based biosynthetic pathway of pigments have been unambiguously determined and the reactions have been characterized from the enzymatic and functional perspectives. Results evidence a palette of molecules in quinoa grains of physiological relevance and which explain minor betalains described in plants of the Caryophyllales order. An entire family of betalains is anticipated.


Assuntos
Betalaínas/biossíntese , Vias Biossintéticas/genética , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Descarboxilação/fisiologia , Dopamina/metabolismo , Pigmentos Biológicos/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Descarboxilação/genética , Dopamina/genética , Variação Genética , Genótipo , Pigmentos Biológicos/genética
19.
J Nutr Biochem ; 92: 108615, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705954

RESUMO

Vegetables are essential protective diet ingredients that supply ample amounts of minerals, vitamins, carbohydrates, proteins, dietary fiber, and various nutraceutical compounds for protection against various disease conditions. Color is the most important quality parameter for the farmers to access the harvest maturity while for the consumer's reliable indices to define acceptability or rejection. The colored vegetables contain functional compounds like chlorophylls, carotenoids, betalains, anthocyanins, etc. well recognized for their antioxidant, antimicrobial, hypolipidemic, neuroprotective, antiaging, diuretic, and antidiabetic properties. Recently, there has been a shift in food consumption patterns from processed to semi-processed or fresh fruits and vegetables to ensure a healthy disease-free life. This shifted the focus of agriculture scientists and food processors from food security to nutrition security. This has resulted in recent improvements to existing crops like blue tomato, orange cauliflower, colored and/or black carrots, with improved color, and thus enriched bioactive compounds. Exhaustive laboratory trials though are required to document and establish their minimum effective concentrations, bioavailability, and specific health benefits. Efforts should also be directed to breed color-rich cultivars or to improve the existing varieties through conventional and molecular breeding approaches. The present review has been devoted to a better understanding of vegetable colors with specific health benefits and to provide in-hand information about the effect of specific pigment on body organs, the effect of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.


Assuntos
Compostos Fitoquímicos/análise , Pigmentos Biológicos/análise , Verduras/química , Dieta Saudável , Alimento Funcional , Genes de Plantas , Humanos , Compostos Fitoquímicos/genética , Pigmentos Biológicos/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Verduras/genética , Verduras/crescimento & desenvolvimento
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33707213

RESUMO

Marine picocyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean, where they exert a profound influence on elemental cycling and energy flow. The use of transmembrane chlorophyll complexes instead of phycobilisomes as light-harvesting antennae is considered a defining attribute of Prochlorococcus Its ecology and evolution are understood in terms of light, temperature, and nutrients. Here, we report single-cell genomic information on previously uncharacterized phylogenetic lineages of this genus from nutrient-rich anoxic waters of the eastern tropical North and South Pacific Ocean. The most basal lineages exhibit optical and genotypic properties of phycobilisome-containing cyanobacteria, indicating that the characteristic light-harvesting antenna of the group is not an ancestral attribute. Additionally, we found that all the indigenous lineages analyzed encode genes for pigment biosynthesis under oxygen-limited conditions, a trait shared with other freshwater and coastal marine cyanobacteria. Our findings thus suggest that Prochlorococcus diverged from other cyanobacteria under low-oxygen conditions before transitioning from phycobilisomes to transmembrane chlorophyll complexes and may have contributed to the oxidation of the ancient ocean.


Assuntos
Complexos de Proteínas Captadores de Luz/genética , Oxigênio/análise , Prochlorococcus/genética , Água do Mar/microbiologia , Clorofila/genética , Cianobactérias/classificação , Cianobactérias/genética , Evolução Molecular , Genes Bacterianos/genética , Genoma Bacteriano/genética , Nutrientes/análise , Oceano Pacífico , Ficobilissomas/genética , Filogenia , Pigmentos Biológicos/genética , Prochlorococcus/classificação , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...